ASP.NET Application and Page Life Cycle
Creation of ASP.NET Environment
Step 1: The user sends a request to IIS. IIS first checks which ISAPI extension can serve this request. Depending on file extension the request is processed. For instance, if the page is an ‘.ASPX page’, then it will be passed to ‘aspnet_isapi.dll’ for processing.
Step 2: If this is the first request to the website, then a class called as ‘
Step 3: The newly created application domain creates hosting environment, i.e. the ‘
Step 4: Once all the core ASP.NET objects are created, ‘
Note: The first time an ASP.NET page is attached to an application, a new instance of ‘
Step 5: The
Step 6:
Note: For more details, read this.
Step 2: If this is the first request to the website, then a class called as ‘
ApplicationManager
’ creates an application domain where the website can run. As we all know, the application domain creates isolation between two web applications hosted on the same IIS. So in case there is an issue in one app domain, it does not affect the other app domain.Step 3: The newly created application domain creates hosting environment, i.e. the ‘
HttpRuntime
’ object. Once the hosting environment is created, the necessary core ASP.NET objects like ‘HttpContext
’ , ‘HttpRequest
’ and ‘HttpResponse
’ objects are created.Step 4: Once all the core ASP.NET objects are created, ‘
HttpApplication
’ object is created to serve the request. In case you have a ‘global.asax’ file in your system, then the object of the ‘global.asax’ file will be created. Please noteglobal.asax file inherits from ‘HttpApplication
’ class.Note: The first time an ASP.NET page is attached to an application, a new instance of ‘
HttpApplication
’ is created. Said and done to maximize performance, HttpApplication
instances might be reused for multiple requests.Step 5: The
HttpApplication
object is then assigned to the core ASP.NET objects to process the page.Step 6:
HttpApplication
then starts processing the request by HTTP module events, handlers and page events. It fires the MHPM event for request processing.Note: For more details, read this.
The below image explains how the internal object model looks like for an ASP.NET request. At the top level is the ASP.NET runtime which creates an ‘
Appdomain
’ which in turn has ‘HttpRuntime
’ with ‘request’, ‘response’ and ‘context’ objects.
-------------------------------------------------------------------------------------------------------
You can read more about the differences from here.
Below is the logical flow of how the request is processed. There are 4 important steps MHPM as explained below:
Step 1(M: HttpModule): Client request processing starts. Before the ASP.NET engine goes and creates the ASP.NET
Step 2 (H: ‘HttpHandler’): Once the above 6 events are fired, ASP.NET engine will invoke
Step 3 (P: ASP.NET page): Once the
Step4 (M: HttpModule): Once the page object is executed and unloaded from memory,
The below figure shows the same in a pictorial format.
Below is the logical flow of how the request is processed. There are 4 important steps MHPM as explained below:
Step 1(M: HttpModule): Client request processing starts. Before the ASP.NET engine goes and creates the ASP.NET
HttpModule
emits events which can be used to inject customized logic. There are 6 important events which you can utilize before your page object is created BeginRequest
, AuthenticateRequest
, AuthorizeRequest
,ResolveRequestCache
, AcquireRequestState
and PreRequestHandlerExecute
.Step 2 (H: ‘HttpHandler’): Once the above 6 events are fired, ASP.NET engine will invoke
ProcessRequest
event if you have implemented HttpHandler
in your project.Step 3 (P: ASP.NET page): Once the
HttpHandler
logic executes, the ASP.NET page object is created. While the ASP.NET page object is created, many events are fired which can help us to write our custom logic inside those page events. There are 6 important events which provides us placeholder to write logic inside ASP.NET pages Init
, Load
,validate
, event
, render
and unload
. You can remember the word SILVER
to remember the events S – Start (does not signify anything as such just forms the word) , I – (Init) , L (Load) , V (Validate), E (Event) and R (Render).Step4 (M: HttpModule): Once the page object is executed and unloaded from memory,
HttpModule
provides post page execution events which can be used to inject custom post-processing logic. There are 4 important post-processing events PostRequestHandlerExecute
, ReleaserequestState
, UpdateRequestCache
and EndRequest
.The below figure shows the same in a pictorial format.
No comments:
Post a Comment